Two dimensional transport characteristics of surface stabilized zero-valent iron nanoparticles in porous media.

نویسندگان

  • S R Kanel
  • R R Goswami
  • T P Clement
  • M O Barnett
  • D Zhao
چکیده

Zero-valent iron nanoparticles (INP) were synthesized and stabilized using poly acrylic acid (PAA) to yield stabilized INP (S-INP). A two-dimensional physical model was used to study the fate and transport of the INP and S-INP in porous media under saturated, steady-state flow conditions. Transport data for a nonreactive tracer, INP, and S-INP were collected under similar flow conditions. The results show that unstabilized INP cannot be transported into groundwater systems. On the other hand, the S-INP can be transported like a tracer without significant retardation. However, the S-INP plume migrated downward as it moved horizontally in the physical model, indicating that small density gradients have significant influence on two-dimensional transport. The variable-density groundwater flow model SEAWAT was used to model the observed density-driven transport patterns. This is the first time a two-dimensional transport data set is reported for demonstrating the multidimensional transport characteristics of nanoparticles. The data shows the importance of density effects, which cannot be fully discerned using one-dimensional, column experiments. Finally, we also demonstrate that the numerical model SEAWAT can be used to predict the density-driven transport characteristics of S-INP in groundwater aquifers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Response of morphological and physiological traits of canola (Brassica napus L.) to application of stabilized zero-valent iron nanoparticles under salinity stress

In order to study the effect of zero-valent iron nanoparticles on morphological and physiological traits of canola (Brassica napus L. cv. 'Hayola 401') under salinity stress, a research was conducted under controlled conditions in factorial based on completely randomized design in three replicates. In the first phase, the zero-valent iron nanoparticles were synthesized and in the second phase, ...

متن کامل

New Method of Synthesis of Stable Zero Valent Iron Nanoparticles (Nzvi) by Chelating Agent Diethylene Triamine Penta Acetic Acid (DTPA) and Removal of Radioactive Uranium From Ground Water by using Iron Nanoparticle

Nowdays,  iron  nanoparticles  due  to  their  unique  characteristics  are used  in  all  of  sciences  and  technology.  These  nano  particles  due  to their  electrical, magnetic,  optical  and  catalytic  properties  and  having high  area  and  activity  that  is  promped  by  their  small  size  and most importantly  many  scientists  from  the  entire  world  are  interested  in th...

متن کامل

Assessment of Phenol Removal Efficiency by Synthesized Zero Iron Nanoparticles and Fe Powder Using the Response Surface Methodology

The purpose of this study was the investigation of the removal of phenol with nanoparticles zero valent iron and iron powder. The effect of various parameters such as initial concentration, pH, contact time, and dosage of NZVI and Fe powder was examined, and a Central Composite Design (CCD) was then applied to appraisal the effect of these variables. The chemical and physical characteristic...

متن کامل

Transport Characteristics of Green-Tea Nano-scale Zero Valent Iron as a Function of Soil Mineralogy

The transport characteristics of iron nanoparticles prepared with a green tea, polyphenol-rich solution, were investigated for two granular media, pure silica sand and sand coated with aluminium hydroxide. The GT-nZVI injection caused a sharp decrease in the effluent pH and increase in the redox potential, which is attributed to the presence of free Fe and polyphenols in the suspension, respect...

متن کامل

Response Surface Methodology Modeling to Determine of Trace Amounts of Phenolic Compounds Using Silver Modified / Zero Valent Iron/ Fe3O4@G Nanocomposite

In this study, a simple and fast magnetic dispersive solid phase extraction methodology was developed G@Fe3O4/Fe/Ag nanoparticles for preconcentration and determine of phenolic compounds in water samples. The sorbent was characterized by assorted characterization method. The effects of diverse factor on the extraction process were studied thoroughly via design of experiment and desirability fun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 42 3  شماره 

صفحات  -

تاریخ انتشار 2008